翻訳と辞書
Words near each other
・ Artin transfer (group theory)
・ Artin's conjecture on primitive roots
・ Artine Artinian
・ Artines
・ Artington
・ Artinian
・ Artinian ideal
・ Artinian module
・ Artinian ring
・ Artinite
・ Artins
・ ArtInsights
・ Artinskian
・ Artinsky District
・ Artin–Hasse exponential
Artin–Mazur zeta function
・ Artin–Rees lemma
・ Artin–Schreier curve
・ Artin–Schreier theory
・ Artin–Tate lemma
・ Artin–Verdier duality
・ Artin–Wedderburn theorem
・ Artin–Zorn theorem
・ Artio
・ Artio Films
・ Artiocetus
・ Artiom Gaiduchevici
・ Artiom Haceaturov
・ Artiom Kiouregkian
・ Artion Poçi


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Artin–Mazur zeta function : ウィキペディア英語版
Artin–Mazur zeta function
In mathematics, the Artin–Mazur zeta function, named after Michael Artin and Barry Mazur, is a function that is used for studying the iterated functions that occur in dynamical systems and fractals.
It is defined as the formal power series
:\zeta_f(z)=\exp \left(\sum_^\infty \textrm
\left(\textrm (f^n)\right) \frac \right),
where Fix(''ƒ'' ''n'') is the set of fixed points of the ''n''th iterate of the function ''ƒ'', and card(Fix(''ƒ'' ''n'')) is the cardinality of this set of fixed points.
Note that the zeta function is defined only if the set of fixed points is finite for each ''n''. This definition is formal in that the series does not always have a positive radius of convergence.
The Artin–Mazur zeta function is invariant under topological conjugation.
The Milnor–Thurston theorem states that the Artin–Mazur zeta function is the inverse of the kneading determinant of ''ƒ''.
==Analogues==

The Artin–Mazur zeta function is formally similar to the local zeta function, when a diffeomorphism on a compact manifold replaces the Frobenius mapping for an algebraic variety over a finite field.
The Ihara zeta function of a graph can be interpreted as an example of the Artin–Mazur zeta function.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Artin–Mazur zeta function」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.